GPT 2

RouteLLM - LLM 라우터 서빙 및 평가를 위한 프레임워크

RouteLLM - LLM 라우터 서빙 및 평가를 위한 프레임워크RouteLLM은 LMSys와 Anyscale이 협력하여 개발한 LLM 라우터 serving 및 평가를 위한 프레임워크모델 지원GPT-4와 Mixtral 8x7B 외에도 strong-model과 weak-model 인수를 수정하여 다양한 모델 조합 사용 가능LiteLLM을 활용해 다양한 오픈소스 및 closed 모델에서 chat completions 지원OpenAI 호환 엔드포인트도 사용 가능다양한 모델 제공업체의 API 키 설정 방법 제공개발 동기비용과 기능이 다양한 LLM을 배포할 때 고품질 응답을 위해 가장 강력한 모델을 사용하면 비용이 많이 들고, 저렴한 모델을 사용하면 품질이 낮아질 수 있음LLM 라우팅은 간단한 쿼리를 저렴한 모델..

AI/AI News 2024.07.27

LLM 연구의 주요 과제들

본 글은 https://huyenchip.com/2023/08/16/llm-research-open-challenges.html라는 포스트를 해석 및 요약한 글입니다. 환각(Hallucination) 감소 및 측정 - 회사에서 LLM을 채택하는데 가장 큰 장애물은 환각 - 환각을 완화하고 측정하기 위한 지표를 개발하는 것은 인기 있는 연구 주제로 많은 스타트업들이 집중하고 있음 - 환각을 줄이기 위한 임시 팁으로 프롬프트에 컨텍스트 추가하기, Chain-Of-Thought, Self-Consistency, 모델에게 간결한 답을 요청하기 등이 있음 컨텍스트 길이 및 컨텍스트 구성 최적화 - 대부분의 질문에는 컨텍스트가 필요함 - SituatedQA 논문에 의하면 정보 검색 질문의 상당부분이 컨텍스트에 따라..

AI/LLM 2023.10.14